
International Journal of Theoretical Physics, Vol. 29, No. 12, 1990 
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Newtonian relations between force and acceleration are confronted with the 
third-order Lorentz-Dirac equation of  motion of  an elementary classical point 
charge. An example of  such a charge that accelerates in a region where external 
fields vanish is discussed. 

1. INTRODUCTION 

The equation of motion of an elementary classical point charge is a 
debated subject. The third-order Lorentz-Dirac (LD) equation is recognized 
by most people working in the field as the required equation (see, e.g., 
Dirac, 1938; Landau and Lifshitz, 1962; Rohrlich, 1965; Pearle, 1982). This 
equation has been criticized for its runaway solutions and for its third-order 
non-Newtonian form. Several authors (Eliezer, 1948; Mo and Papas, 1971; 
Bonnor, 1974; Herrera, 1977) have suggested alternative second-order 
differential equations as candidates for equations of motion of an elementary 
classical point charge. 

It has recently been proved by Comay (1990a) that in the case of a 
scattering process of a charge moving rectilinearly in an external electrostatic 
field, runaway solutions are incompatible with the LD equation. On the 
other hand, the four second-order Newtonian equations mentioned above 
as substitutes for the LD equation have already been proved by Huschilt 
and Baylis (1974) and by Comay (1987, 1990b) to be unphysical. These 
results support the acceptance of the LD equation as the law of motion of 
elementary classical point charges. 

In the present work the LD equation is taken as the correct law 
of motion of an elementary classical point charge. On this basis, it is proved 
that consequences of this third-order equation cannot be reconciled with 
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Newtonian notions of  linked relations between acceleration and e x t e r n a l  
forces. Hereafter,  the requirement saying that an elementary classical point 
charge must move inertially in a region where external fields vanish is called 
the Newtonian requirement. 

The following discussion applies units where the speed of light takes 
the value c = 1. Greek indices range from 0 to 3 and Latin ones range from 
1 to 3. The metric is diagonal and its entries are (1, - 1 ,  - 1 ,  -1 ) .  The symbol 
,~ denotes the partial differentiation with respect to x ~ and an upper  dot 
denotes the differentiation with respect to the particle's invariant time r. 
The symbols v ~ and a ~ denote 4-velocity and 4-acceleration of a particle, 
respectively. 

The structure of  the discussion is as follows. Some properties of  the 
LD equation are pointed out in Section 2. An experiment where an elemen- 
tary classical point charge accelerates in an external field-free region is 
discussed in Section 3. The contents of  Section 4 substantiate the results 
of  the previous one. In Section 5 it is explained why classical electrodynamics 
of  an elementary point charge cannot generally satisfy the Newtonian 
requirement. Concluding remarks are included in the last section. 

2. S O M E  P R O P E R T I E S  OF T H E  LD E Q U A T I O N  

The covariant form of  the LD equation of a charge q is 

2q2(t~ = M a  ~" - qFextl)~,~" - 2 q 2 ( a ~ a ~ ) v ~  (1) 

where M denotes the mass of  q and Fe~xt is the tensor of electromagnetic 
fields associated with external sources. This is a third-order differential 
equation of the charge coordinate x"  with respect to its invariant time r. 
evidently, using the relation 

d d 
~rr = y~-7 (2) 

where y = (1 - v2) -~/2, one can cast it into a third-order equation with respect 
to the laboratory time t. The LD equation is used here in the case of  a 
single charge moving rectilinearly in an external electrostatic field. As proved 
by Comay (1990a), a scattering process of  this kind, where a charge moves 
inertially at r = - c o ,  before it approaches the interaction region, ends in 
asymptotic inertial motion at r ~ ,  when the interaction stops and the 
charge moves toward infinity. This physically agreeable property supports 
the acceptance of the LD equation as an equation describing correctly the 
motion of classical point charges. 
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The asymptotic inertial motion of a charge obeying the LD equation 
is used here in a proof  of  its compatibility with energy conservation. To 
this end, the 0-component  of  the LD equation (1) is integrated on the 
interval (-oo,  ~ ) .  

The term on the left-hand side of (1) yields 

oo da o 
~ dr  = a~  - a ~  = 0 (3) 

where the null result is derived from the vanishing acceleration at x = • 
This conclusion follows the initial value at the remote past and the 
asymptotic inertial motion derived by Comay (1990a). 

As is well known, the 4-velocity takes the form 

v ~ = 7(1, u~, Vy, Uz) (4) 

Using this relation for the first term on the right-hand side of  (1), one 
readily finds 

~ _ M a  ~ dr  = M3,(~) - M3'(-oo)  (5) 

Result (5) is the decrease of  the charge's self-energy M y  during the entire 
motion. 

For the next quantity, one finds 

F~ d r =  E . - d - ~ d r =  - g r a d  qb. dx  = dP(-oo)-qb(oo) = 0 (6) 

where qb denotes the electrostatic potential associated with external charges. 
This potential vanishes at infinity and the null value of (6) follows. 

The last quantity is 

2q2(a~a~)v~  d~" = dP~~ 
- - -  Prad (7) _~ dr  d r =  o 

where o Prad denotes the energy radiated from a system where just a single 
charge accelerates [see, e.g., Landau and Lifshitz (1962, p. 222) or Rohrlich 
(1965, p. 111), but notice the different metric used therein]. 

The LD equation (1) and the results (3) and (5)-(7) prove that the 
decrease in the charge's mechanical  energy during the entire process equals 
the energy radiated by it. Hence, energy conservation is established for the 
entire scattering process discussed here. This conclusion shows an important  
physical property of  the LD equation: in the case of  a charge moving 
rectilinearly in an electrostatic external field, a solution that ends with an 
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inertial motion at infinity yields (3) and energy conservation follows. This 
satisfactory property of  the LD equation is found useful in a later part of 
the discussion. 

3. AN EXPERIMENT 

The inertial motion of a charge obeying the LD equation is derived by 
Comay (1990a) for asymptotic regions where external electrostatic fields 
become negligible. At these regions these fields decrease like 1/r", where 
n is an integer greater then 1. This is a crucial element of  the derivation of 
inertial motion in asymptotic regions. It turns out that the derivation does 
not apply to the motion of a charge at field-free portions of  space which 
are located near the interaction region. The following experiment tests a 
case like this. 

Consider an elementary classical point charge q that moves along the 
x axis from x = -oo toward x = ~ .  A motionless sphere whose radius is R 
is made of an insulating material and its center coincides with the origin. 
The sphere is covered uniformly with electric charge Q. The path along 
which q moves is split into three intervals, (-oo, - R ] ,  ( - R ,  R), and [R, ~) .  
The external field at these intervals is - Q / x  2, O, and Q/x 2, respectively. 
Our purpose is to find the motion of q at the field-free interval ( - R ,  R). 

Evidently, the acceleration a of q does not vanish identically at points 
like x : - R ,  where it enters the field-free region. This property can be 
proved in the following way. Assume a = 0 at x = - R .  Consider an analogous 
experiment where the charged sphere is replaced by a similar sphere whose 
radius is 

R ' =  R -/5 (8) 

and the two spheres are covered with the same amount  of  charge. Evidently, 
along the interval ( - ~ ,  - R ] ,  the LD equation takes the same form in the 
two cases and the motion of q is the same. I f  the acceleration of q does 
not vanish at R' ,  then the required result holds. If, on the other hand, for 
every value /5 e [0, e] used in (8), a = 0 at the corresponding R' ,  then one 
finds that q moves inertially along the interval [ - R , - R +  e], where the 
external field is nonzero. It is shown that this result is incompatible with 
the LD equation (1). 

I f  the 3-acceleration vanishes, then y is a constant and an inspection 
of (4) shows that the 4-acceleration vanishes, too. As assumed above, the 
acceleration vanishes at an interval [0, e]. This property means that the 
4-acceleration as well as its derivative vanish there. Substituting a ~ = a~ = 0 
into the LD equation (1), one finds a single nonzero term qEyv. Hence, an 
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inertial motion along an interval where an external electric field that is 
parallel to the motion does not vanish is inconsistent with the LD equation. 

The foregoing discussion proves that, at x = - R ,  one generally finds 
that the acceleration a # 0. In the given problem, the third-order LD equation 
is piecewise continuously differentiable at the interval (-~z, oo). Let rl be 
the invariant time of q when it passes x = - R .  It is shown in the next section 
that the LD equation has a unique solution at a small time interval which 
includes r, .  Therefore, an integration shows that at r , ,  the coordinate, 
velocity, and acceleration of  q vary continuously. 

Using this outcome, let us turn to the motion of q along the interval 
( - R ,  R) where the external electrostatic field vanishes. The initial values 
at r, are x = - R ,  v > 0, and a # 0. Assume that q reaches an inner point 
x = - R  + 77 at r '  = r, + 0. It follows that, at this point, the 4-acceleration is 

a ~ ( z ,  ) : a ~ ( r , )  + f'da2 dr (9) 
d ~x dr 

The derivative da u / dr can be obtained from the LD equation (1). Obviously, 
since a~(r , )#  0 and da~/dr is bounded at ( - R , - R  + ~7), one can always 
define a small enough value for ~7 so that the acceleration does not vanish 
at this interval. This result means that an experiment can be constructed so 
that a charge obeying the LD equation accelerates in a region where external 
fields vanish. 

4. A FURTHER DISCUSSION OF THE ACCELERATION 

The following arguments indicate that the last conclusion is an inherent 
property of the LD equation. In particular, it is explained here why one 
should not try compelling the charge to obey the Newtonian requirement. 

One point relies on the structure of theoretical physics. Here, some 
basic principles yield mathematical relations like laws of  motion. Having 
these results, one abides by mathematical rules while solving specific cases 
where the laws of  motion are tested. This approach is applied to the specific 
example described in the previous section. 

In the case of  a charge moving rectilinearly from x = - ~  toward x = 
in an external electrostatic field, one can eliminate the time from the LD 
equation (1) and cast it into a second-order equation where the coordinate 
x is the independent variable 

~q2(y2 _ 1),/2y,, = M y ' -  qE(x) (10) 

and y is defined after (2) [see Section 2 of Comay (1990a)]. At x = - R ,  
the velocity as well as y 2 -  1 are greater than zero and equation (10) satisfies 
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the Lipschitz condition at a small region which includes this point. There- 
fore, the proof  of existence and uniqueness of solutions applies. In par- 
ticular, the proof  holds for the experiment discussed in the previous section, 
where the differential equation is piecewise continuous [see, e.g., Codding- 
ton and Levinson, 1955). 

Having a unique solution to the LD equation (10) means that (1) has 
such a solution, too. Hence, one can use the bounded values of  the right-hand 
side of (1) and find that 

f da~ d a ~ 

= d - -~ -~  

is continuous and (9) holds. It follows that the conclusion obtained in the 
previous section stating that a charge can accelerate in a region where 
external fields vanish has a sound mathematical basis. 

The next point shows that if the LD equation is valid, then the 
Newtonian requirement is unphysical. To this end, assume that the charge 
obeys the LD equation at all regions, except along a small interval [ - R -  p, 
- R  + p]. At this interval the charge "surrenders" to the Newtonian require- 
ment and exits at x = - R + p  with a null acceleration. This assumption 
means that along this short interval, a second-order Newtonian equation 
written in terms of  external fields controls the motion. The scheme is tested 
in the limit where p-~ 0. 

Let us test energy conservation in the process described above. Since 
p-~ 0 and the equation is bounded, one can ignore the contributions made 
along the interval [ - R - p ,  - R + p ] .  Thus, instead of (3), one finds 

da ~ d'r + - -  dr 
_ dr R+o d ~ "  

= a ~  - p) - a~ + a~ - aO(_R + p) 

= a ~  - p )  (11) 

In this calculation a ~ vanishes at infinity because of initial values at r = -oo 
and due to the results obtained by Comay (1990a). It also vanishes at 
x = - R + p ,  in accordance with the assumed validity of the Newtonian 
requirement. An inspection of the final expression of (5)-(7) shows that, 
since the continuity of these quantities is sustained, the corresponding 
expressions do not change. 

Comparing this analysis with that of Section 2, where energy conserva- 
tion by the LD equation is proved, it is found that if, along a very short 
interval, the moving charge "surrenders '~ to the Newtonian requirement, 
then an extra term 2q2a~ - p )  appears and energy balance is destroyed. 
Indeed, as shown in the previous section, at x = - R - p ,  a ~ as well as the 
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extra term do not vanish identically. This conclusion means that one cannot 
violate the LD equation along a short interval in a way that complies with 
the Newtonian requirement and with energy conservation as well. 

5. C O N T I N U O U S L Y  C H A R G E D  PARTICLES AND 
ELEMENTARY P O I N T  PARTICLES 

The comparison of particles made of continuously distributed charged 
matter and elementary classical point particles provides another reason for 
the abandonment  of  the Newtonian requirement. Moreover, it shows that 
this conclusion emerges from fundamental  properties of  classical electro- 
dynamics and should not be considered as a surprise. 

Let us examine the motion of a small classical particle whose charge 
is distributed continuously at its volume. Hereafter,  a charge like this is 
called a C-charge and an elementary classical point charge is called a 
P-charge. Classical electrodynamics of  continuously distributed charged 
matter  is a closed theory. Its equations of  motion are Maxwell equations 

F~f  = -41rJ  *~ (12) 

F;.~.A + F.a.;. + Fa~.,~=O (13) 

and the Lorentz force 

f p~u i,~v m a  c =  F j ~ d 3 r = q F  v~ (14) 
V 

where V denotes the particle's volume. In the final expression F ;~ represents 
the average fields tensor at V. 

Constructing energy-momentum tensors of  fields and of matter, one 
takes the 4-divergence of their sum and proves energy-momentum 
conservation 

T(r ) , , ,+  T(,, ,). .  - 0 (15) 

(Landau and Lifshitz, 1962, pp. 91-95). A property of  the theory of con- 
tinuously distributed charge is that one can consider an infinitesimal amount  
of  charge dq, ignore terms depending on higher powers of  this quantity, 
and derive linear expressions like (14). 

Let us examine the motion of a C-charge q and split the field exerted 
on it. Thus, the Lorentz force takes the following form: 

m a  c FextJ,,d r +  (16) = F i m J  ,, d r 
V dV 



1434 Comay 

where Fe~t and f~,t are associated with charge located outside and inside 
the volume of  q, respectively. Our purpose is to substitute f~nt by quantities 
depending on appropriate  derivatives of  the coordinates of  q. Expanding 
the retarded potentials of  the charge of q as a power series in c -1, Landau 
and Lifshitz (1962) prove that if the series derived for the fields are truncated 
after the quadratic terms of c -1, then one obtains the Darwin Lagrangian, 

1 ~ qjqt 
= -  +~--'- m j v j -  Y. Rj, L 2 2  rnjv 2 22  4 _ _  

j j j > l  

qjq_._....~t[ (Vj" Rfl)(v t �9 Rfl)] 
+j>,~, 2c2Rj, vj. v ,+ Rjt2 (17) 

(Landau and Lifshitz, 1962, pp. 190-193). The Darwin Lagrangian depends 
on the instantaneous radius vector Rjt between two volume elements AVj 
and A Vt of  q. Hence, the forces derived from it vanish in pairs and do not 
make a contribution to the motion of the center of  mass of  the particle. 

Retaining terms up to c -3 in the series, Landau and Lifshitz (1962) 
obtains the Abraham terms of the LD equation (Rohrlich, 1965, p. 18) 

F ~ = ~q2[d~" + (a~a,~)v ~ ] (18) 

It is easy to see that higher terms of the expansions in c -1 can be ignored 
if the spatial size of  q is small enough. 

This analysis proves that, in the case of  such a small C-charge, the LD 
equation (1), which is written in terms of "~ Fext, is equivalent to the Lorentz 
force (14), which depends on the entire field tensor F '~. It is further shown 
that the overall force exerted on a C-charge by retarded fields associated 
with its own charge equal (18) and does not vanish identically. Therefore, 

F e x t  - if a C-charge enters a region where "~ - 0, then the Lorentz force (14) as 
well as its equivalent LD equation (1) prove that the particle may accelerate 
there, due to the nonzero contribution of "~ Fint. The form of the self-force 
(18) shows that it may provide a reason for its own existence. Indeed, it 
can be seen from (18) that this force does not vanish if the acceleration or 
its derivative are nonzero. On the other hand, if Fe~t = 0 and the force (18) 
associated with F~7 does not vanish, then a C-charge accelerates. 

As stated in Section 2, the LD equation is accepted here as the correct 
equation of P-charges. It follows that the proof  showing that a C-charge 

Fe• = 0 holds for P-charges, too, because may accelerate at regions where ~ 
P-charges, like very small C-charges, satisfy the LD equation (1). 

The discussion carried out in this section relies on retardation of 
electromagnetic fields. It proves that if terms associated with c -3 are not 
ignored in power series of  fields, then the overall self-force does not vanish 
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identically. This property of  classical electrodynamics is the root of  the 
peculiar property of charge motion where the Newtonian requirement does 
not hold. 

6. C O N C L U D I N G  R E M A R K S  

The discussion carried out in this work takes the following course. 
It relies on the conclusions obtained by Comay (1990b) showing that 

a second-order Newtonian equation cannot depend linearly on external 
fields, that all suggested nonlinear equations of  this kind are unphysical, 
and that such Newtonian equations encounter a problem that looks unsolv- 
able: they must substitute correctly the linear dependence of  the Lorentz 
force o n  Fi~nt by a nonlinear dependence o n  Fex  t- 

The third-order LD equation is proved by Landau and Lifshitz (1962) 
to be based on the right substitution. Assuming that classical electro- 
dynamics is a self-consistent theory, the LD equation (1) is considered here 
as the correct law of motion of point charges. A simple experiment where 
a charge obeying this equation accelerates in a region where external fields 
vanish is described. 

It is explained further why an attempt to impose inertial motion on a 
charge moving in a bounded region where external fields vanish violates 
mathematical laws as well as the law of energy conservation. The origin of 
the results obtained here is related to the distinction between the Lorentz 
force (14), which is written in terms of the entire field tensor F ~'~, and the 

F~xt. As proved by LD equation (1), which depends on external fields ~ 
Landau and Lifshitz, the overall force exerted on a charge by retarded 
self-fields Fi~7 does not vanish. It follows that a vanishing external field is 
not a sufficient condition for inertial motion. 

As is well known, the establishment of classical electrodynamics, which 
culminated in the formulation of  special relativity, showed that Newtonian 
mechanics is conceptually wrong and can be useful only as an approximation 
that is rather good in certain cases. The present work discusses another 
aspect of Newtonian mechanics. This point boils down to the idea of a null 
self-force. This idea is commonplace in mechanics, but, as proved by Landau 
and Lifshitz (1962), it does not hold in electrodynamics, where the self-force 
of retarded fields may be nonzero. On the other hand, this self-force does 
not lead to runaway solutions. As proved by Comay (1990a), in the case 
of a rectilinear motion, the LD equation satisfies asymptotic inertial motion 
as well as energy conservation by the entire process. 

It is interesting to note that in quantum mechanics, the notion of force 
does not play a central role and the equations of motion are written in 
terms of potentials. Here force appears in an indirect manner in cases where 
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the classical limit holds. In these cases, quantum mechanics  yields Ehren- 
fest's theorem, which agrees with the Lorentz force. Schiff (1955) concludes 
that "a wave packet moves  like a classical particle if it is sufficiently well 
localized so that the electromagnetic fields change by a negligible amount 
over its dimensions." 

Similar results concerning the notion of  force are obtained on a purely 
classical level. It is shown that acceleration is not linked to the existence 
o f  external force. On the other hand, as proved by Comay (1990a),  the 
asymptotic motion of  a classical charge is dominated by the part of  the 
Lorentz force associated with external fields, whereas radiation reaction 
terms become negligible. Obviously,  in asymptotic regions, external fields 
can be considered uniform over the dimensions of  a wave packet. It fol lows 
that an analysis o f  the asymptotic motion is an example where quantum 
mechanics as well as classical theory show that the motion of  a charge is 
determined by the part of  the Lorentz force associated with external fields. 
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